
Copyright © 2002 Poppendieck.LLC Page 1

Principles of Lean Thinking

Mary Poppendieck
Poppendieck.LLC

7666 Carnelian Lane
Eden Prairie, MN 55346 USA

952-934-7998
mary@poppendieck.com

Abstract

In the 1980’s, a massive paradigm shift hit factories
throughout the US and Europe. Mass production and
scientific management techniques from the early 1900’s
were questioned as Japanese manufacturing companies
demonstrated that ‘Just-in-Time’ was a better paradigm.
The widely adopted Japanese manufacturing concepts
came to be known as ‘lean production’. In time, the
abstractions behind lean production spread to logistics,
and from there to the military, to construction, and to
the service industry. As it turns out, principles of lean
thinking are universal and have been applied
successfully across many disciplines.

Lean principles have proven not only to be universal,
but to be universally successful at improving results.
When appropriately applied, lean thinking is a well-
understood and well-tested platform upon which to
build agile software development practices.

Introduction

Call a doctor for a routine appointment and chances are
it will be scheduled a few weeks later. But one large
HMO in Minnesota schedules almost all patients within
a day or two of their call, for just about any kind of
medical service. A while ago, this HMO decided to
worked off their schedule backlogs by extending their
hours, and then vary their hours slightly from week to
week to keep the backlog to about a day. True, the
doctors don’t have the comforting weeks-long list of
scheduled patients, but in fact, they see just as many
patients for the same reasons as they did before. The
patients are much happier, and doctors detect medical
problems far earlier than they used to.

The idea of delivering packages overnight was novel
when Federal Express was started in 1971. In 1983, a
new company called Lens Crafters changed the basis of
competition in the eyeglasses industry by assembling
prescription glasses in an hour. The concept of

shipping products the same day they were ordered was
a breakthrough concept when LL Bean upgraded its
distribution system in the late 1980’s. Southwest
Airlines, one of the few profitable airlines these days,
saves a lot of money with its unorthodox method of
assigning seats as people arrive at the airport. Dell
maintains profitability in a cutthroat market by
manufacturing to order in less than a week. Another
Austin company builds custom homes in 30 days.

The common denominator behind these and many other
industry-rattling success stories is lean thinking. Lean
thinking looks at the value chain and asks: How can
things be structured so that the enterprise does nothing
but add value, and does that as rapidly as possible? All
the intermediate steps, all the intermediate time and all
the intermediate people are eliminated. All that’s left
are the time, the people and the activities that add value
for the customer.

Origins of Lean Thinking
Lean thinking got its name from a 1990’s best seller
called The Machine That Changed the World : The
Story of Lean Production1. This book chronicles the
movement of automobile manufacturing from craft
production to mass production to lean production. It
tells the story of how Henry Ford standardized
automobile parts and assembly techniques, so that low
skilled workers and specialized machines could make
cheap cars for the masses. The book goes on to
describe how mass production provided cheaper cars
than the craft production, but resulted an explosion of
indirect labor: production planning, engineering, and
management. Then the book explains how a small
company set its sights set on manufacturing cars for
Japan, but it could not afford the enormous investment
in single purpose machines that seemed to be required.

1 The Machine That Changed the World : The Story of Lean
Production, by Womack, James P., Daniel T. Jones, and
Daniel Roos, New York: Rawson and Associates; 1990.

Copyright © 2002 Poppendieck.LLC Page 2

Nor could it afford the inventory or large amount of
indirect labor that seemed necessary for mass
production. So it invented a better way to do things,
using very low inventory and moving decision-making
to production workers. Now this small company has
grown into a large company, and the Toyota Production
System has become known as ‘lean production’.

“The mass-producer uses narrowly skilled professionals
to design products make by unskilled or semiskilled
workers tending expensive, single-purpose machines.
These churn out standardized products at high volume.
Because the machinery costs so much and is so
intolerant of disruption, the mass-producer adds many
buffers – extra supplies, extra workers, and extra space
– to assure smooth production…. The result: The
customer gets lower costs but at the expense of variety
and by means of work methods that most employees
find boring and dispiriting.”2

Think of the centralized eyeglasses laboratory.
Remember that Sears used to take two or three weeks to
fill orders from its once-popular catalog. Recall the
long distribution channel that used to be standard in the
computer market. Think dinosaurs. Centralized
equipment, huge distribution centers and lengthy
distribution channels were created to realize economies
of scale. They are the side effects of mass-production,
passed on to other industries. What people tend to
overlook is that mass-production creates a tremendous
amount of work that does not directly add value.
Shipping eyeglasses to a factory for one hour of
processing adds more handling time by far than the
processing time to make the glasses. Adding retail
distribution to the cutthroat personal computer industry
means that a manufacturer needs six weeks to respond
to changing technology, instead of six days. Sears’
practice of building an inventory of mail orders to fill
meant keeping track of stacks of orders, not to mention
responding to innumerable order status queries and
constant order changes.

“The lean producer, by contrast, combines the
advantages of craft and mass production, while
avoiding the high cost of the former and the rigidity of
the later… Lean production is ‘lean’ because it uses
less of everything compared with mass production –
half the human effort in the factory, half the
manufacturing space, half the investment in tools, half
the engineering hours to develop a new product in half
the time. Also, it requires keeping far less than half the
inventory on site, results in many fewer defects, and

2 Womack (1990) p 13.

produces a greater and ever growing variety of
products.”3

While on a tour of a large customer, Michael Dell saw
technicians customizing new Dell computers with their
company’s ‘standard’ hardware and software. “Do you
think you guys could do this for me?” his host asked.
Without missing a beat, Dell replied, “Absolutely, we’d
love to do that.”4 Within a couple of weeks, Dell was
shipping computers with factory-installed, customer-
specific hardware and software. What took the
customer an hour could be done in the factory in
minutes, and furthermore, computers could be shipped
directly to end-users rather than making a stop in the
corporate IT department. This shortening of the value
chain is the essence of lean thinking.

Companies that re-think the value chain and find ways
to provide what their customers value with significantly
fewer resources than their competitors can develop an
unassailable competitive advantage. Sometimes
competitors are simply not able to deliver the new value
proposition. (Many have tired to copy Dell; few have
succeeded.) Sometimes competitors do not care to
copy a new concept. (Southwest Airlines has not
changed the industry’s approach to seat assignments.)
Sometimes the industry follows the leader, but it takes
time. (Almost all direct merchandise is shipped within a
day or two of receiving an order these days, but the
Sears catalog has been discontinued.)

Lean Thinking in Software Development
eBay is a company which pretty much invented ‘lean’
trading by eliminating all the unnecessary steps in the
trading value chain. In the mid 1990’s, basic eBay
software capabilities were developed by responding
daily to customer requests for improvements.5
Customers would send an e-mail to Pierre Omidyar
with a suggestion and he would implement the idea on
the site that night. The most popular features of eBay,
those which create the highest competitive advantage,
were created in this manner.

Digital River invented the software download market in
the mid 1990’s by focusing on ‘lean’ software delivery.
Today Digital River routinely designs and deploys

3 Womack (1990) p 13.
4 Direct from Dell, by Michael Dell with Catherine Fredman,
Harper Business, 1999, p 159
5 Q&A with eBay's Pierre Omidyar, Business Week Online,
December 3, 2001.

Copyright © 2002 Poppendieck.LLC Page 3

sophisticated web sites for corporate customers in a
matter of a weeks, by tying the corporation’s legacy
databases to standard front end components customized
with a ‘look and feel’ specific to each customer.

In the mid 1990’s, Microsoft implemented corporate-
wide financial, purchasing and human resource
packages linked to data warehouses which can be
accessed via web front-ends. Each was implemented
by “a handful of seasoned IT and functional experts…
(who got) the job done in the time it takes a …
committee to decide on its goals.”6

In each of these examples, the focus of software
development was on rapid response to an identified
need. Mechanisms were put in place to dramatically
shorten the time from problem recognition to software
solution. You might call it ‘Just-in-Time’ software
development.

The question is – why isn’t all software developed
quickly? The answer is – rapid development must be
considered important before it becomes a reality. Once
speed becomes a value, a paradigm shift has to take
place, changing software development practices from
the mass production paradigm to lean thinking.

If your company writes reams of requirements
documents (equivalent to inventory), spends hours upon
hours tracking change control (equivalent to order
tracking), and has an office which defines and monitors
the software development process (equivalent to
industrial engineering), you are operating with mass-
production paradigms. Think ‘lean’ and you will find a
better way.

Basic Principles of Lean Development

There are four basic principles of lean thinking which
are most relevant to software development:

The Basic Principles of Lean Development
Add Nothing But Value (Eliminate Waste)
Center On The People Who Add Value

Flow Value From Demand (Delay Commitment)
Optimize Across Organizations

6 Inside Microsoft: Balancing Creativity and Discipline,
 Herbold, Robert J.; Harvard Business Review, January 2002.

Add Nothing But Value (Eliminate Waste)
The first step in lean thinking is to understand what
value is and what activities and resources are absolutely
necessary to create that value. Once this is understood,
everything else is waste. Since no one wants to
consider what they do as waste, the job of determining
what value is and what adds value is something that
needs to be done at a fairly high level. Let’s say you
are developing order tracking software. It seems like it
would be very important for a customer to know the
status of their order, so this would certainly add
customer value. But actually, if the order is in house
for less than 24 hours, the only order status that is
necessary is to inform the customer that the order was
received, and then that it has shipped, and let them
know the shipping tracking number. Better yet, if the
order can be fulfilled by downloading it on the Web,
there really isn’t any order status necessary at all.

To develop breakthroughs with lean thinking, the first
step is learning to see waste. If something does not
directly add value, it is waste. If there is a way to do
without it, it is waste. Taiichi Ohno, the mastermind of
the Toyota Production System, identified seven types of
manufacturing waste:

The Seven Wastes of Manufacturing
Overproduction

Inventory
Extra Processing Steps

Motion
Defects
Waiting

Transportation

Here is how I would translate the seven wastes of
manufacturing to software development:

The Seven Wastes of Software Development
Overproduction = Extra Features

Inventory = Requirements
Extra Processing Steps = Extra Steps

Motion = Finding Information
Defects = Defects Not Caught by Tests
Waiting = Waiting, Including Customers

Transportation = Handoffs

Copyright © 2002 Poppendieck.LLC Page 4

Extreme Programming (XP) is a set of practices which
focuses on rapid software development. It is interesting
to examine how XP works to eliminate the seven
wastes of software development:

Waste in Software
Development

How Extreme Programming
Addresses Waste

Extra Features Develop only for today’s
stories

Requirements Story cards are detailed only
for the current iteration

Extra Steps
Code directly from stories;
get verbal clarification directly
from customers

Finding Information Have everyone in the same
room; customer included

Defects Not
Caught by Tests

Test first; both developer
tests and customer tests

Waiting, Including
Customers Deliver in small increments

Handoffs Developers work directly with
customers

‘Do It Right The First Time’
XP advocates developing software for the current need,
and as more ‘stories’ (requirements) are added, the
design should be ‘refactored’7 to accommodate the new
stories. Is it waste to refactor software? Shouldn’t
developers “Do It Right the First Time?”

It is instructive to explore the origins of the slogan “Do
It Right the First Time.” In the 1980’s it was very
difficult to change a mass-production plant to lean
production, because in mass production, workers were
not expected to take responsibility for the quality of the
product. To change this, the management structure of
the plant had to change. “Workers respond only when
there exists some sense of reciprocal obligation, a sense
that management actually values skilled workers, …
and is willing to delegate responsibility to [them].”8
The slogan “Do It Right the First Time” encouraged
workers to feel responsible for the products moving
down the line, and encourage them to stop the line and
troubleshoot problems when and where they occurred.

7 Refactoring is improving the design of software without
changing functionality.
8 Womack (1990) p 99.

In the software industry, the same slogan “Do It Right
the First Time,” has been misused as an excuse to apply
mass-production thinking, not lean thinking to software
development. Under this slogan, responsibility has
been taken away from the developers who add value,
which is exactly the opposite of its intended effect.
“Do It Right the First Time” has been used as an excuse
to insert reams of paperwork and armies of analysts and
designers between the customer and the developer. In
fact, the slogan is only properly applied if it gives
developers more, not less, involvement in the results of
their work.

A more appropriate translation of such slogans as “Zero
Defects” and “Do It Right the First Time” would be
“Test First”. In other words, don’t code unless you
understand what the code is supposed to do and have a
way to determine whether the code works. A good
knowledge of the domain coupled with short build
cycles and automated testing constitute the proper way
for software developers to “Do It Right the First Time”.

Center On The People Who Add Value
Almost every organization claims it’s people are
important, but if they truly center on those who add
value, they would be able to say:

The people doing the work are the center of
Resources
Information

Process Design Authority
Decision Making Authority

Organizational Energy

In mass-production, tasks are structured so that low
skilled or unskilled workers can easily do the repetitive
work, but engineers and managers are responsible for
production. Workers are not allowed to modify or stop
the line, because the focus is to maintain volume. One
of the results of mass-production is that unskilled
workers have no incentive to volunteer information
about problems with the manufacturing line or ways to
improve the process. Maladjusted parts get fixed at the
end of the line; a poor die or improperly maintained
tool is management’s problem. Workers are neither
trained nor encouraged to worry about such things.

“The truly lean plant has two key organizational
features: It transfers the maximum number of tasks and
responsibilities to those workers actually adding value
to the car on the line, and it has in place a system for

Copyright © 2002 Poppendieck.LLC Page 5

detecting defects that quickly traces every problem,
once discovered, to its ultimate cause.”9 Similarly in
any lean enterprise, the focus is on the people who add
value. In lean enterprises, traditional organizational
structures give way to new team-oriented organizations
which are centered on the flow of value, not on
functional expertise.

The first experiment Taiichi Ohno undertook in
developing lean production was to figure out a way to
allow massive, single-purpose stamping machines to
stamp out multiple parts. Formerly, it took skilled
machinists hours, if not days, to change dies from one
part to another. Therefore, mass production plants had
many single purpose stamping machines in which the
dies were almost never changed. Volume, space, and
financing were not available in Japan to support such
massive machines, so Ohno set about devising simple
methods to change the stamping dies in minutes instead
of hours. This would allow many parts of a car to be
made on the same line with the same equipment. Since
the workers had nothing else to do while the die was
being changed, they also did the die changing, and in
fact, the stamping room workers were involved in
developing the methods of rapid die changeover.

Ohno transferred most of the work being done by
engineers and managers in mass-production plants to
the production workers. He grouped workers in small
teams and trained the teams to do their own industrial
engineering. Workers were encouraged to stop the line
if anything went wrong, (a management job in mass-
production). Before the line was re-started, the workers
were expected to search for the root cause of the
problem and resolve it. At first the line was stopped
often, which would have been a disaster at a mass-
production plant. But eventually the line ran with very
few problems, because the assembly workers felt
responsible to find, expose, and resolve problems as
they occurred.

It is sometimes thought that a benefit of good software
engineering is to allow low skilled programmers to
produce code while a few high skilled architects and
designers do the critical thinking. With this in mind, a
project is often divided into requirements gathering,
analysis, design, coding, testing, and so on, with
decreasing skill presumably required at each step. A
‘standard process’ is developed for each step, so that
low-skilled programmers, for example, can translate
design into code simply by following the process.

9 Womack (1990) p 99. Italics in the original.

This kind of thinking comes from mass-production,
where skilled industrial engineers are expected to
design production work for unskilled laborers. It is the
antithesis of lean thinking and devalues the skills of the
developers who actually write the code as surely as
industrial engineers telling laborers how to do their jobs
devalues the skills of production workers.

Centering on the people who add value means
upgrading the skills of developers through training and
apprenticeships. It means forming teams that design
their own processes and address complete problems. It
means that staff groups and managers exist to support
developers, not to tell them what to do.

Flow Value From Demand
(Delay Commitment)

The idea of flow is fundamental to lean production. If
you do nothing but add value, then you should add the
value in as rapid a flow as possible. If this is not the
case, then waste builds up in the form of inventory or
transportation or extra steps or wasted motion. The
idea that flow should be ‘pulled’ from demand is also
fundamental to lean production. ‘Pull’ means that
nothing is done unless and until a downstream process
requires it. The effect of ‘pull’ is that production is not
based on forecast; commitment is delayed until demand
is present to indicate what the customer really wants.

Pulling from demand can be one of the easiest ways to
implement lean principles, as LL Bean and Lens
Crafters and Dell found out. The idea is to fill each
customer order immediately. In mass-production days,
filling orders immediately meant building up lots of
inventory in anticipation of customer orders. Lean
production changes that. The idea is to be able to make
the product so fast that it can be made to order. True,
Dell and Lens Crafters and LL Bean and Toyota have to
have some inventory of sub-assemblies waiting to be
turned into a finished product at a moments notice.
But it’s amazing how little inventory is necessary, if the
process to replenish the inventory is also lean. A truly
lean distribution channel only works with a really lean
supply chain coupled to very lean manufacturing.

The “batch and queue” habit is very hard to break. It
seems counterintuitive that doing a little bit at a time at
the last possible moment will give faster, better,
cheaper results. But anyone designing a control system
knows that a short feedback loop is far more effective at
maintaining control of a process than a long loop. The
problem with batches and queues is that they hide
problems. The idea of lean production is to expose

Copyright © 2002 Poppendieck.LLC Page 6

problems as soon as they arise, so they can be corrected
immediately. It may seem that lean systems are fragile,
because they have no padding. But in fact, lean
systems are quite robust, because they don’t hide
unknown, lurking problems and they don’t pretend they
can forecast the future.

In Lean Software Development, the idea is to maximize
the flow of information and delivered value. As in lean
production, maximizing flow does not mean
automation. Instead, it means limiting what has to be
transferred, and transferring that as few times as
possible over the shortest distance with the widest
communication bandwidth as late as is possible.
Handing off reams of frozen documentation from one
function to the next is a mass-production mentality. In
Lean Software Development, the idea is to eliminate as
many documents and handoffs as possible. Documents
which are not useful to the customer are replaced with
automated tests. These tests assure that customer value
is delivered both initially and in the future when the
inevitable changes are needed.

In addition to rapid, Just-in-Time information flow,
Lean Software Development means rapid, Just-in-Time
delivery of value. In manufacturing, the key to
achieving rapid delivery is to manufacture in small
batches pulled by a customer order. Similarly in
software development, the key to rapid delivery is to
divide the problem into small batches (increments)
pulled by a customer story and customer test. The
single most effective mechanism for implementing lean
production is adopting Just-in-Time, pull-from-demand
flow. Similarly, the single most effective mechanism
for implementing Lean Development is delivering
increments of real business value in short time-boxes.

In Lean Software Development, the goal is to eliminate
as many documents and handoffs as possible. The
emphasis is to pair a skilled development team with a
skilled customer team and give them the responsibility
and authority to develop the system in small, rapid
increments, driven by customer priority and feedback.

Optimize across Organizations
Quite often, the biggest barrier to adopting lean
practices is organizational. As products move from one
department to another, a big gap often develops,
especially if each department has its own set of
performance measurements that are unrelated to the
performance measurements of neighboring
departments.

For example, let’s say that the ultimate performance
measurement of a stamping room is machine
productivity. This measurement motivates the
stamping room to build up mounds of inventory to keep
the machines running at top productivity. It does not
matter that the inventory has been shown to degrade the
overall performance of the organization. As long as the
stamping room is measured primarily on machine
productivity, it will build inventory. This is what is
known as a sub-optimizing measurement, because it
creates behavior which creates local optimization at the
expense of overall optimization.

Sub-optimizing measurements are very common, and
overall optimization is virtually impossible when they
are in place. One of the biggest sub-optimizing
measurements in software development occurs when
project managers are measured on earned value.
Earned value is the cost initially estimated for the tasks
which have been completed. The idea is that you had
better not have spent any more than you estimated. The
problem is, this requires a project manager to build up
an inventory of task descriptions and estimates. Just as
excess inventory in the stamping room slows down
production and degrades over time, the inventory of
tasks required for earned value calculations gets in the
way of delivering true business value and also degrades
over time. Nevertheless, if there is an earned value
measurement in place, project tasks are specified and
estimated, and earned value is measured. When it
comes to a choice between delivering business value or
earned value (and it often does), earned value usually
wins out.

 To avoid these problems, lean organizations are
usually structured around teams that maintain
responsibility for overall business value, rather than
intermediate measurements such as their ability to
speculate and pad estimates. Another approach is to
foster a keen awareness that the downstream
department is a customer, and satisfying this internal
customer is the ultimate performance measurement.

The paradigm shift that is required with lean thinking is
often hindered if the organization is not structured
around the flow of value and focused on helping the
customer pull value from the enterprise. For this
reason, software development teams are best structured
around delivering increments of business value, with all
the necessary skills on the same team (eg. customer
understanding / domain knowledge, architecture /
design, system development, database administration,
testing, system administration, etc.).

Copyright © 2002 Poppendieck.LLC Page 7

Software Development Contracts
Flow along the value stream is particularly difficult
when multiple companies are involved. Many times I
have heard the lament: “Everything you say makes
sense, but it is impossible to implement in our
environment, because we work under contracts with
other organizations.” Indeed, the typical software
development contract can be the ultimate sub-
optimizing mechanism. Standard software contracts
and supplier management practices have a tendency to
interfere with many lean principles.

Manufacturing organizations used to have the same
problem. For example, US automotive companies once
believed the best way to reduce the cost of parts in an
automobile was with annual competitive bidding. If the
only thing that is important is cheap parts, competitive
bidding may seem like the best way to achieve this
goal. However, if overall company performance is
more important, then better parts which integrate more
effectively with the overall vehicle are more valuable.
In fact, there is an direct correlation between an
automotive company’s profitability and its degree of
collaboration with suppliers.10 When Chrysler moved
from opportunistic to collaborative relationships with
its suppliers in the late 1990’s, it’s performance
improved significantly.

The software industry has some lessons to learn in the
area of contractual agreements between organizations.
It needs to learn how to structure collaborative
relationships which maximize the overall results of both
parties. A key lesson the software industry needs to
learn is how to structure contracts for incremental
deliveries that are not pre-defined in the contract, yet
assure the customer of prompt delivery of business
value appropriate to their investment. Here again, we
can learn from lean production.

Lean manufacturing organizations develop a limited
number of relationships with ‘trusted’ suppliers, and in
turn, gain the ‘trust’ of these suppliers. What does
‘trust’ mean? “Trust [is] one party’s confidence that
the other party in the exchange relationship will fulfill
its promises and commitments and will not exploit its
vulnerabilities.”11 “…trust…[is] not based on greater
interpersonal trust, but rather greater trust in the

10 Collaborative Advantage, by Jeffrey H. Dyer, Oxford
University Press; 2000, p 6.
11 Dyer (2000) p 88.

fairness, stability, and predictability of [the company’s]
routines and processes.”12

It has been the practice of legal departments writing
software contracts to put into contractual language all
of the protections necessary to keep the other side
‘honest.’ However, the transaction costs associated
with creating and monitoring such contracts are
enormous. Many contracts all but demand a waterfall
process, even if both companies believe this is not the
best approach. It’s time that the software development
industry learned the lesson of Supply Chain
Management – “Extraordinary productivity gains in the
production network or value chain are possible when
companies are willing to collaborate in unique ways,
often achieving competitive advantage by sharing
resources, knowledge, and assets…. Today
competition occurs between value chains and not
simply between companies.”13

 Summary and Conclusion
The lean production metaphor is a good one for
software development, if it is applied in keeping with
the underlying spirit of lean thinking. In the past, the
application of some manufacturing concepts to software
development (‘Do It Right the First Time’ comes to
mind) may have lacked a deep understanding of what
makes lean principles work. The underlying principles
of eliminating waste, empowering front line workers,
responding immediately to customer requests, and
optimizing across the value chain are fundamental to
lean thinking. When applied to software development,
these concepts provide a broad framework for
improving software development.

12 Dyer (2000) p 100
13 Dyer (2000) p 5

